Combustion behaviors and temperature characteristics in pulverized biomass dust explosions
Haipeng Jiang,
Mingshu Bi,
Bei Li,
Bo Gan and
Wei Gao
Renewable Energy, 2018, vol. 122, issue C, 45-54
Abstract:
Flame propagation behaviors and temperature characteristics of four types of biomass with two different particle size distributions were studied experimentally. Results show that the flame front of a 50–70 μm biomass is nearly spherical and smooth, the flame zone is characterized by yellow or dark red spotted flames, and luminous flames are present behind it. The flame morphology of 100–200 μm biomass dust is irregular and discrete. The average flame propagation velocity and the amplitude of the velocity fluctuation are functions of the mass density of the biomass particles and depend on the particle size distributions. The flame-speed oscillation of biomass particles is caused by the velocity slip between the volatile gases and particles. Flame temperatures of 50–70 μm and 100–200 μm biomass dust reach the maximum value at 1000 g/m3, and show a slight dependence on the particle size distribution. An analysis of the Knudsen number indicates that the combustion characteristics of biomass particles with particle size distributions within the range studied are characterized by a continuum regime. It is indicated that 100–200 μm poplar sawdust will be the “best” option as a biomass replacement feedstock for coal powered plants.
Keywords: Biomass dust explosion; Flame propagation behaviors; Flame temperature (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118300739
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:122:y:2018:i:c:p:45-54
DOI: 10.1016/j.renene.2018.01.063
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().