Biohydrogen production from chewing gum manufacturing residue in a two-step process of dark fermentation and photofermentation
K. Seifert,
R. Zagrodnik,
M. Stodolny and
M. Łaniecki
Renewable Energy, 2018, vol. 122, issue C, 526-532
Abstract:
Two-step hybrid system of microbiological hydrogen production with the diluted solid wastes from chewing gum production as a substrate was studied. As the first step, dark fermentation with the digested sludge at different concentrations of waste was performed. The effluent originating from the dark process was subsequently applied in photofermentation with Rhodobacter sphaeroides bacteria. In the first step, the degradation of sweetening substances as well as Talha gum remaining in waste was observed. Hydrogen, carbon dioxide and liquid metabolites (Volatile Fatty Acids - VFAs) were the main products. The maximum hydrogen production in dark fermentation (0.36 L/Lmedium) was observed at concentration of 67 g waste/L. Effluents from the first step, containing mainly xylitol, butyric, acetic, lactic and propionic acids, served as the source of organic carbon for photofermentation. The maximum amount of hydrogen at this step reached 0.80 L H2/L of diluted (1:8) effluent. The presence of significant concentration of ammonium ions (∼480 mg/L) in non-diluted effluent completely ceased the hydrogen formation by nitrogenase, therefore reduction in the amount of NH4+ ions in the medium was necessary. This was realized by the dilution of effluent from dark fermentation. The total amount of hydrogen produced in sequential dark and photo-fermentation process under the optimized reaction conditions reached the volume of ∼6.7 L H2/L of non-diluted waste.
Keywords: Chewing gum production waste; Dark fermentation; Photofermentation; Biohydrogen; Hybrid system (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118301150
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:122:y:2018:i:c:p:526-532
DOI: 10.1016/j.renene.2018.01.105
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().