Heat transfer network for a parabolic trough collector as a heat collecting element using nanofluid
Alibakhsh Kasaiean,
Mohammad Sameti,
Reza Daneshazarian,
Zahra Noori,
Armen Adamian and
Tingzhen Ming
Renewable Energy, 2018, vol. 123, issue C, 439-449
Abstract:
In this study, a solar thermal heat transfer network for a parabolic trough collector is introduced, in which a nanofluid is considered as the heat transfer medium. The finite difference scheme (FDM) was adopted as the approach, and a code was created in MATLAB. The model could be used to investigate the thermal performance of a heat collecting element (HCE). In the developed formulation, each section of the solar receiver collecting element was discretized into various segments in both axial and radial directions. Then, energy balance equations were presented for each segment in the control volume. The heat transfer equations, the thermodynamic properties, and the optical formulations were all taken into account in details. The set of algebraic equations were solved numerically by using iterative numerical solutions simultaneously. The radiant loss was increased from 26.5 to 57.3 W/m in the range of 30–100 °C. Also, the convective heat losses show a growth of 220% from 30 °C to 100 °C. On the other hand, the convective heat transfer coefficient is increased by adding multiwall carbon nanotube (MWCNT) nanoparticles to the base fluid (thermal oil). The amelioration is 15% by adding 6% volume fraction of nanoparticles.
Keywords: Solar energy; Trough collector; Nanofluid; Heat collecting element (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118302064
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:123:y:2018:i:c:p:439-449
DOI: 10.1016/j.renene.2018.02.062
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().