Degradation issues of PEM electrolysis MEAs
S. Siracusano,
N. Van Dijk,
R. Backhouse,
L. Merlo,
V. Baglio and
A.S. Aricò
Renewable Energy, 2018, vol. 123, issue C, 52-57
Abstract:
One of main challenge of proton exchange membrane (PEM) water electrolysis is the achievement of a long-term durability exceeding 100 khours. Accordingly, degradation mechanisms of membrane electrode assemblies (MEAs) and stack components of PEM electrolysers deserve large attention. An important objective of the EU ELECTROHYPEM project was to develop components for PEM electrolysers with enhanced activity and stability in order to reduce stack and system costs and to improve efficiency, performance and durability. The focus of the project was concerning mainly with electrocatalysts and membranes development and validation of these materials in a PEM electrolyser. In this work, a first set of MEAs, used for 3500–5700 h in a PEM electrolyser, was investigated using electrochemical and physico-chemical techniques. The goal was to individuate key degradation issues and to provide a reliable estimation of the MEA endurance under real life operation. Specific approaches to mitigate the degradation mechanisms are discussed.
Keywords: PEM water electrolysis; Degradation mechanisms; Iridium-ruthenium oxide electrocatalyst; Perfluoro-sulfonic membranes; Pt electrocatalysts (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118301678
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:123:y:2018:i:c:p:52-57
DOI: 10.1016/j.renene.2018.02.024
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().