An environmental Life Cycle Assessment of rooftop solar in Bangkok, Thailand
John Eskew,
Meredith Ratledge,
Michael Wallace,
Shabbir H. Gheewala and
Pattana Rakkwamsuk
Renewable Energy, 2018, vol. 123, issue C, 781-792
Abstract:
This study quantifies the environmental burdens created by a planned rooftop photovoltaic (PV) solar installation on a university campus in Bangkok, Thailand, and models the potential of rooftop solar to meet the country’s renewable energy goals. Impacts are evaluated using Life Cycle Assessment and recommendations made for upstream purchasing decisions according to different scenarios. Results indicate that main contribution to impacts occurs in manufacturing by stage and from PV modules by component. Impacts generated by the mounting structure and inverters are also significant, and together these components constitute over 90% of environmental burdens. A climate change impact of 0.079 kg CO2-eq/kWh is produced over the lifetime of the system. Energy Payback Time is calculated as 2.5 years, and the Economic Payback Period is 7.4 years. The system is estimated to avoid 1.00E+06 kg CO2-eq over its lifetime. Installation of similar rooftop PV systems on 50% of university and government buildings in Bangkok could result in a net reduction of 4.80E+09 kg CO2-eq. Domestic production of components and recycling of materials is identified as a best-case scenario, with alleviations across all impact categories. Economic analysis suggests on-site electricity consumption paired with a net-metering policy scheme is the best way to incentivize PV solar energy installations.
Keywords: Photovoltaic; Life Cycle Assessment; Rooftop solar; Renewable energy; Thailand (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118301897
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:123:y:2018:i:c:p:781-792
DOI: 10.1016/j.renene.2018.02.045
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().