Enzymatic esterification of acid oil from soapstocks obtained in vegetable oil refining: Effect of enzyme concentration
Mariana Cruz,
Sílvia Cardinal Pinho,
Ricardo Mota,
Manuel Fonseca Almeida and
Joana Maia Dias
Renewable Energy, 2018, vol. 124, issue C, 165-171
Abstract:
The enzymatic esterification of an acid waste oil was investigated using a commercial lipase (Thermomyces lanuginosus) in batch reactors, under the following reaction conditions: temperature of 35 °C, molar ratio of acid:alcohol of 1:1.5, vigorous magnetic stirring and enzyme concentration from 2 to 5 wt.%. The reaction progressed during 24 h. The acid oil obtained from soapstock of vegetable oil refining had an acidity of 65.5 wt.% and a very high sulphur content of 10 400 mg/kg. Thus, a pretreatment to reduce the mineral acidity before enzymatic esterification was necessary. The selected pretreatment consisted of one wash with 1:1 V/V oil:NaOH solution followed by two washings with 1:1 V/V oil:distilled water. The results from the esterification of the pretreated oil showed a clear influence of enzyme concentration in the reduction of the acidity, most of which was achieved in the first 7 h. The amount and type of alcohol had minor influence in the reaction conversion and the fractionated addition of methanol had only expressive effect for lower catalyst concentrations, with final conversions being still unsatisfactory. The best conditions found were 4 wt.% of enzyme, 35 °C, 24 h, and 1:1.5 molar ratio of acid:alcohol, which afforded an 80% reduction of acidity.
Keywords: Biofuels; Enzymatic esterification; Lipase; Free fatty acids; Waste oil (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117305591
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:124:y:2018:i:c:p:165-171
DOI: 10.1016/j.renene.2017.06.053
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().