Modeling the carbon budget of the Australian electricity sector's transition to renewable energy
Bahareh Sara Howard,
Nicholas E. Hamilton,
Mark Diesendorf and
Thomas Wiedmann
Renewable Energy, 2018, vol. 125, issue C, 712-728
Abstract:
We report on the carbon footprint of 22 scenario pathways for the transition of the Australian electricity sector to predominantly renewable energy (RE). The analysis employs a dynamic and discrete numerical model that takes into account what we have termed renewable energy ‘breeding’, i.e. RE technologies are being made increasingly with renewable electricity as the transition progresses. Our results show that every scenario under investigation fails to achieve the sector's share of Australia's national carbon budget for a 1.5 °C global warming limit and around one-third fail the 2 °C target by 2050. In most of the scenarios considered, the reduction in annual life-cycle CO2e emissions in the year 2050, from taking into account the effect of RE breeding, was substantial, in some cases reducing annual emissions by more than 90%. But, the reduction in cumulative CO2e emissions resulting from RE breeding only became significant post-2040. Unless a very rapid transition is made to more than 80% renewable electricity in Australia well before mid-century, any positive ‘breeding’ effect is simply dwarfed by fossil-fuel derived emissions prior to and during the actual transition. Therefore, early, decisive, wide-scale deployment of a suitable mix of RE technologies is needed to reduce cumulative emissions.
Keywords: CO2 emissions; Carbon budget; Scenario modeling; Energy transition; Carbon footprint (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118301563
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:125:y:2018:i:c:p:712-728
DOI: 10.1016/j.renene.2018.02.013
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().