Prediction intervals for global solar irradiation forecasting using regression trees methods
Cyril Voyant,
Fabrice Motte,
Gilles Notton,
Alexis Fouilloy,
Marie-Laure Nivet and
Jean-Laurent Duchaud
Renewable Energy, 2018, vol. 126, issue C, 332-340
Abstract:
A global horizontal irradiation prediction (from 1 h to 6 h) is performed using 2 persistence models (simple and “smart” ones) and 4 machine learning tools belonging to the regression trees methods family (normal, pruned, boosted and bagged). A prediction band is associated to each forecast using methodologies based on: bootstrap sampling and k-fold approach, mutual information, stationary time series process with clear sky model, quantiles estimation and cumulative distribution function. New reliability indexes (gamma index and gamma test) are built from the mean interval length (MIL) and prediction interval coverage probability (PCIP). With such methods and error metrics, good prediction bands are estimated for Ajaccio (France) with a MIL close to 113 Wh/m2, a PCIP reaching 70% and a gamma index lower than 0.9.
Keywords: Probabilistic forecasts; Bagging; Boosting; Pruning; Mean interval length; Prediction interval coverage probability (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118303665
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:126:y:2018:i:c:p:332-340
DOI: 10.1016/j.renene.2018.03.055
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().