EconPapers    
Economics at your fingertips  
 

Analysis and optimization of HVAC control systems based on energy and performance considerations for smart buildings

Raad Z. Homod

Renewable Energy, 2018, vol. 126, issue C, 49-64

Abstract: The most distinctive properties of the HVAC systems are their large-scale nonlinear systems that contain large thermal inertia, time variability, nonlinear constraints, uncertain disturbance factors, multivariate systems and coupled properties for both temperature and humidity. This paper considers a novel control algorithm that could handle such intricate characteristics by using hybridization layers between the physical parameters' memory and the neural networks' weight, which is well-structured by the Takagi-Sugeno-Kang Fuzzy inference strategy. The application of nonlinear regression to the offline hybrid layers construction and online fine-tuning methods are conducted by using the Gauss-Newton Method in order to achieve fast tuning operation. The feedforward strategy is adopted, so as to boost the stability of the overall system in addition to increasing the control precision and its response speed. Moreover, the effects of disturbances and uncertainty are eradicated by online tuning. The tracking control goal takes full advantage of mature strategies regarding the predicted mean vote (PMV) to address high thermal inertia, to save energy and to tackle coupling problem. The proposed control performance results are analysed and compared to hybrid PID cascade control, where both strategies are tested individually and simultaneously through the use on the HVAC system. The obtained results showed that Feedforward Hybrid Layers Control (FHLC) led to effective advantages regarding optimal performance, adaptation, precision and robustness. Furthermore, adopted the adaptive structural control algorithm for FHLC to improve indoor thermal comfort, whereas the significant energy reduction is achieved. The prospective scope for future work is to expand the control structure for full building control by adding more controlled elements, such as lighting, ventilation, security, fire protection and other building appliances.

Keywords: Feedforward hybrid layers control; TS fuzzy identification; HVAC control system; Intelligent buildings; Hybrid learning (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118303276
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:126:y:2018:i:c:p:49-64

DOI: 10.1016/j.renene.2018.03.022

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:126:y:2018:i:c:p:49-64