Parametric design methodology for maximizing energy capture of a bottom-hinged flap-type WEC with medium wave resources
Yi-Chih Chow,
Yu-Chi Chang,
Da-Wei Chen,
Chen-Chou Lin and
Shiaw-Yih Tzang
Renewable Energy, 2018, vol. 126, issue C, 605-616
Abstract:
This paper describes a parametric design methodology for maximizing the capture factor (CF) of a bottom-hinged flap-type wave energy converter (BHF-WEC). The general equation for CF is first derived using the damped-harmonic-oscillator model. Second, correspondences between the general and the 2-D ideal CF equations are established. Then, a scheme is proposed to account for any effects apart from the 2-D ideal modeling with three parameters, which constitute the basis for fitting any data series stemming from either numerical simulations or experiments. Once these three parameters are evaluated from data fitting, the maximum CF and its occurring conditions can be found. In the present study, WEC-Sim simulations are conducted for a series of finite rectangular BHF-WECs with effects of PTO and varying width (B) for two thicknesses (d) under two characteristic wave lengths (L) of the medium wave resources that Taiwan possesses. It is found that for B/L smaller than about 0.30, the maximum CF in resonance mode, CFres, is greater than 1.0 and much higher than that not in resonance mode, CFopt, which is always below 1.0. The captured power index in resonance mode, CFres × (B/L), is almost invariant in B/L = 0.11–0.30. Several BHF-WEC design guidelines can be deduced from these results.
Keywords: Capture factor; Bottom-hinged flap-type WEC; Flap width; Parametric data-fitting scheme; Resonance mode; Wave resource (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118303707
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:126:y:2018:i:c:p:605-616
DOI: 10.1016/j.renene.2018.03.059
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().