An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring
Wenguang Yang,
Chao Liu and
Dongxiang Jiang
Renewable Energy, 2018, vol. 127, issue C, 230-241
Abstract:
The vast installment of wind turbines and the development of condition monitoring system provides large amounts of operational data for condition monitoring and health management, while the lack of labeled data becomes one of the major challenges for the data analytics. To address this issue, this work presents an unsupervised anomaly detection approach for wind turbine condition monitoring, where a spatiotemporal graphical modeling method, spatiotemporal pattern network (STPN), is applied to extract the spatial and temporal features between the variables in the system, and an energy-based model, stacked Restricted Boltzmann Machine (RBM) is used to capture the system-wide patterns and then applied for condition monitoring. Case studies on three data sets are carried out including: (1) anomaly detection on a benchmark model for fault detection and isolation, (2) anomaly detection on an experimental data set with the normal condition and 11 fault conditions and (3) online condition monitoring using real data from a wind farm in northwest China. The results show that the proposed approach is capable of detecting the anomalies without the need for labeling data.
Keywords: Wind turbine; Unsupervised condition monitoring; Spatiotemporal graphical modeling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118304671
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:127:y:2018:i:c:p:230-241
DOI: 10.1016/j.renene.2018.04.059
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().