Optimal bidding strategy of wind power producers in pay-as-bid power markets
Karim Afshar,
Farshad Shamsini Ghiasvand and
Nooshin Bigdeli
Renewable Energy, 2018, vol. 127, issue C, 575-586
Abstract:
This paper presents a method to determine the optimal bidding strategy of the wind power producers with market power for a strategic presence in the day-ahead market with pay as bid method. Since the wind power producer is not capable of exact prediction of his power production, he has to trade the difference between the amount won in the day-ahead market and the actual production value in the balancing market. Uncertainties related to power generation is modeled by likely scenarios. However in order to model the punitive effect of trade in balancing market, the balancing market price is considered as a factor of the day-ahead market's clearing price. In the proposed model, optimal bidding strategy is formulated via a bi-level problem including the upper-level and lower-level sub-problems. The purpose of the upper-level sub-problem is to maximize the wind power producer's earning while the purpose of the lower-level sub-problem is to clear the day-ahead market. To solve both upper-level and lower-level problems, particle swarm optimization algorithm is applied. The results of three-bus test system and IEEE 24-bus RTS shows the efficiency of the proposed method.
Keywords: Wind power producer; Bidding strategy; Electricity market; Pay-as-bid; Optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118305342
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:127:y:2018:i:c:p:575-586
DOI: 10.1016/j.renene.2018.05.015
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().