Microwave assisted pretreatment of eucalyptus sawdust enhances enzymatic saccharification and maximizes fermentable sugar yield
Negin Amini,
Victoria S. Haritos and
Akshat Tanksale
Renewable Energy, 2018, vol. 127, issue C, 653-660
Abstract:
There is an urgent need of sustainable and efficient methods for the production of biofuels and chemicals from lignocellulosic feedstock. The purpose of this study was to develop a mild, cost-effective and environmentally benign pretreatment for woody lignocellulose to maximize sugar yield via enzymatic saccharification. Microwave irradiation (MW) of Eucalyptus regnans sawdust in water was investigated and compared directly against conventional liquid hot water (LHW) pretreatment. Following 30 min microwave irradiation at 180 °C, the sugar yield was 3.5 times higher using MW than LHW pretreatment under the same conditions. Complete release of C5 and C6 sugars was achieved after the two-step method of MW pretreatment followed by enzymatic hydrolysis, compared with only 4% without pretreatment and 31% after LHW. Removal of ‘lignin droplets’ formed on the surface of the pretreated fibers via flowing hot water showed only minor improvement in the yield of enzymatic saccharification. Our results support the hypothesis that lignin prevents access of enzymes rather than inhibits their activity. MW accelerated depolymerization of hemicellulose, opening the structure more than LHW pretreatment.
Keywords: Microwave pretreatment; Enzymatic hydrolysis; Lignin coalescence; Xylose removal (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118305202
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:127:y:2018:i:c:p:653-660
DOI: 10.1016/j.renene.2018.05.001
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().