A general methodology for performance prediction of pumps-as-turbines using Artificial Neural Networks
Mosè Rossi and
Massimiliano Renzi
Renewable Energy, 2018, vol. 128, issue PA, 265-274
Abstract:
Artificial Neural Networks (ANNs) are used in this work as a computational methodology to forecast both Best Efficiency Point (BEP) and performance curves of Pumps-as-Turbines (PATs) operating in reverse mode. Experimental data from literature are used to train the ANNs: their operating conditions in both pump mode (Input) and turbine mode (Target) feed the ANNs in terms of non-dimensional magnitudes. ANNs proved to be an interesting tool for this kind of evaluation and allowed to evaluate both BEP and performance of PATs in an accurate way. Comparing the forecasted data and the experimental ones, the worst achieved R2-value was found to be equal to 0.96152 and 0.98429 for BEP and performance curves, respectively. Finally, the prediction capability of the ANNs was also tested by comparing the predicted data with the experimental results of a PAT that was not used in the training process. Therefore, this work supplies a tool of general validity to determine the BEP of PATs as well as their off-design performance, simply by introducing, as input of the ANNs, the operating data in pump mode that are typically available in the datasheet provided by the pumps' manufacturers.
Keywords: Pumps-as-Turbines; Energy recovery; Artificial neural networks; Performance forecast; Laboratory tests; Selection tool (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118305810
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:128:y:2018:i:pa:p:265-274
DOI: 10.1016/j.renene.2018.05.060
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().