EconPapers    
Economics at your fingertips  
 

Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation

Simone Dugaria, Matteo Bortolato and Davide Del Col

Renewable Energy, 2018, vol. 128, issue PB, 495-508

Abstract: The addition of nanoparticles in a base fluid can enhance its optical properties, in particular its absorption properties. Thus, nanofluids can be successfully used in solar collectors to absorb the solar radiation in their volume and avoid using an absorber plate. This paper investigates the application of aqueous suspensions as volumetric absorber in a concentrating direct absorption solar collector: a suspension of single wall carbon nanohorns (SWCNHs) in water is chosen as the nanofluid. A model of a solar receiver with a planar geometry to be installed in a parabolic trough concentrator is developed: the radiative transfer equation in participating medium and the energy equation are numerically solved to predict the thermal performance of the receiver. The developed model is capable to predict the temperature distribution, heat transfer rate and penetration distance of the concentrated solar radiation inside the nanofluid volume. The simulated performance of the direct absorption receiver has been compared with calculations and experimental data of two surface absorption conventional receivers under the same operating conditions.

Keywords: Nanofluids; DASC; Direct absorption; Solar collector (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117305335
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:128:y:2018:i:pb:p:495-508

DOI: 10.1016/j.renene.2017.06.029

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:128:y:2018:i:pb:p:495-508