Wind shear effect induced by the platform pitch motion of a spar-type floating wind turbine
Binrong Wen,
Xinliang Tian,
Qi Zhang,
Xingjian Dong,
Zhike Peng,
Wenming Zhang and
Kexiang Wei
Renewable Energy, 2019, vol. 135, issue C, 1186-1199
Abstract:
The platform pitch motion of a Floating Wind Turbine (FWT) introduces additional relative wind speed to the rotor. This additional relative wind speed distributes linearly along the vertical altitude, which is similar to the linear wind shear, thus it is addressed as the platform-pitch-induced (PPI) wind shear effect. In this paper, the PPI wind shear is investigated numerically with the Free Vortex Method (FVM). Firstly, the typical wind shear and the PPI wind shear are separately analyzed and then compared with each other. The wind profile of the typical wind shear is stationary. However, the wind profile of the PPI wind shear is time-varying, which complicates the aerodynamics of the FWT. Subsequently, the influencing factors of the PPI wind shear are thoroughly discussed. Results show that the PPI wind shear is related to the FWTstructures, and it is increased with the increases of the platform pitch amplitude, frequency and the tip speed ratio. The PPI wind shear introduces significant fluctuations to the aerodynamic loads, which smear the power quality and result in potential fatigue damages to the FWT structures. To mitigate the adverse effects of the PPI wind shear, advanced control strategies and optimized structure designs should be developed.
Keywords: Floating wind turbine; Pitch; Wind shear; Fatigue; Aerodynamics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118314654
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:135:y:2019:i:c:p:1186-1199
DOI: 10.1016/j.renene.2018.12.034
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().