EconPapers    
Economics at your fingertips  
 

Theoretical study of direct vapor generation for energy integrated solar absorption machines

Antonio Lecuona-Neumann, Antonio Famiglietti and Mathieu Legrand

Renewable Energy, 2019, vol. 135, issue C, 1335-1353

Abstract: Integrating the vapor generator/separator of an absorption machine and the solar collector field is proposed as a means to reduce the cost and complexity of solar cooling and heating facilities. In order to further enhance the competitiveness of these facilities, some previous work on hybrid and combined absorption cycles is analyzed so that the proposed integration can be configured using these cycles. As a result, a single machine could in addition to pump heat can produce electricity and even consume it for fulfilling the cold and heat demand from the user when solar is not enough, this avoiding implementing a vapor mechanical compressor.

Keywords: Solar heating & cooling; Absorption machines; Direct vapor production; Grid integration; Countercurrent stratified two-phase flow; Binary mixture flow boiling with NH3/LiNO3 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118311194
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:135:y:2019:i:c:p:1335-1353

DOI: 10.1016/j.renene.2018.09.056

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:1335-1353