EconPapers    
Economics at your fingertips  
 

Influences of dust deposition on ground-mounted solar photovoltaic arrays: A CFD simulation study

Hao Lu and Li-Zhi Zhang

Renewable Energy, 2019, vol. 135, issue C, 21-31

Abstract: Dust deposition processes and behaviors on ground-mounted solar photovoltaic (PV) arrays were investigated by shear stress transport k-ω turbulence model and the discrete particle model. Inlet velocity and turbulent kinetic energy distributions fitted from experimental data were imposed in the simulation to improve prediction accuracy. After mesh independent test and numerical verification, air flow fields over the solar PV array, dust deposition rates for different rows of PV panels and different dust diameters were investigated. It was found that dust deposition rates on solar PV panel array are declined from the front to the back row. Maximum deposition rate from the first to the fifth row of PV panels is 18.89%, 12.35%, 9.62%, 6.83% or 5.71% respectively. The corresponding dust diameter for the peak deposition rate is 350, 250, 200, 150 or 150 μm respectively. The main deposition mechanisms were investigated by analyzing dust motion trajectories on PV panel arrays. Furthermore, Maximum PV output reduction induced by dust can reach 79.77%, 18.16%, 5.88%, 2.66% or 1.89% from the first to the last row of PV panels, respectively. Therefore, the most degradation of PV efficiency appears for the first row of PV panels.

Keywords: Dust deposition; Solar PV array; Efficiency reduction; Numerical simulation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118314150
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:135:y:2019:i:c:p:21-31

DOI: 10.1016/j.renene.2018.11.096

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:21-31