EconPapers    
Economics at your fingertips  
 

A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems

Ali Salari and Ali Hakkaki-Fard

Renewable Energy, 2019, vol. 135, issue C, 437-449

Abstract: Dust deposition on the surface of solar systems is one of the main parameters that significantly affects the performance of such systems. In this study, the effect of dust deposition density on the performance of photovoltaic modules (PV) and photovoltaic-thermal systems (PVT) is numerically investigated. Accordingly, all layers of a monocrystalline silicon PV module for both systems are simulated. Moreover, the effect of various system parameters on the performance of both clean and dusty PV module and PVT system are studied. The studied parameters included: solar radiation intensity, ambient temperature, coolant inlet temperature, and coolant inlet velocity. The obtained results indicate that by increasing the dust deposition density on the surface of the PV module from 0 g/m2 to 8 g/m2, its electrical efficiency reduces by 26.36%. In addition, by increasing the dust deposition density on the surface of the PVT system from 0 g/m2 to 8 g/m2, its electrical and thermal efficiencies reduce by 26.42% and 16.11%, respectively. Moreover, the simulation results show that the effect of considered parameters on the clean solar system is more significant than the dusty system. Furthermore, two correlations for electrical and thermal output reduction as a function of dust deposition density are proposed.

Keywords: Photovoltaic module; Photovoltaic-thermal system; Dust deposition; CFD; Performance; Simulation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118314496
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:135:y:2019:i:c:p:437-449

DOI: 10.1016/j.renene.2018.12.018

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:437-449