The influence of low-temperature surface induction on evacuation, pump-out hole sealing and thermal performance of composite edge-sealed vacuum insulated glazing
Saim Memon,
Yueping Fang and
Philip C. Eames
Renewable Energy, 2019, vol. 135, issue C, 450-464
Abstract:
Hermeticity of vacuum edge-sealing materials are one of the paramount requirements, specifically, to the evolution of energy-efficient smart windows and solar thermal evacuated flat plate collectors. This study reports the design, construction and performance of high-vacuum glazing fabrication system and vacuum insulated glazing (VIG). Experimental and theoretical investigations for the development of vacuum edgeseal made of Sn-Pb-Zn-Sb-AlTiSiCu composite in the proportion ratio of 56:39:3:1:1 by % (CS-186) are presented. Experimental investigations of the seven constructed VIG samples, each of size 300 mm·300 mm·4 mm, showed that increasing the hot-plate surface temperatures improved the cavity vacuum pressure whilst expediting the pump-out hole sealing process but also increases temperature induced stresses. Successful pump-out hole sealing process of VIG attained at the hot-plate set point temperature of 50 °C and the approximate cavity pressure of 0.042 Pa was achieved. An experimentally and theoretically validated finite volume model (FVM) was utilised. The centre-of-pane and total thermal transmittance values are calculated to be 0.91 Wm−2K−1 and 1.05 Wm−2K−1, respectively for the VIG. FVM results predicted that by reducing the width of vacuum edge seal and emissivity of coatings the thermal performance of the VIG is improved.
Keywords: Vacuum; Glazing; Solar-thermal; Performance; Modelling; Transmittance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118314563
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:135:y:2019:i:c:p:450-464
DOI: 10.1016/j.renene.2018.12.025
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).