Transient characteristics of a parabolic trough direct-steam-generation process
Lu Li,
Jie Sun,
Yinshi Li,
Ya-Ling He and
Haojie Xu
Renewable Energy, 2019, vol. 135, issue C, 800-810
Abstract:
Solar-powered direct steam generation (DSG) is attractive for power generation and industrial utilization due to the combination of renewable-energy source and clean energy carrier. An improved SIMPLE algorithm ensuring the dual roles of pressure acting on velocity and density fields is developed to realize thermo-hydraulic completely-coupled modeling of a typical DSG loop with transient phase-change and multiple flow-patterns. The excitation-response characteristics of the loop were investigated under various step-variations of direct normal irradiance (DNI), inlet mass flowrate (min) and inlet temperature (tin). Increasing DNI (decreasing min) is found to narrow the preheating-evaporation regions and expand the superheating region, and vice versa. While under step-variations of tin, the evaporation region almost remains unchanged (about 403 m). The water slides to a lower temperature faster than climbs to a higher one under variations of DNI (up to 670s vs. 2960s) and min (up to 1184s vs. 4420s), simultaneously the outlet temperature (tout) staying a monotonical response-trend. However, under tin variations, tout holds a higher-order trait. The responses of both pressure and velocity are tightly coupled and always hold higher-order trait. The response time of the total mass in the loop is almost 2.5 to 5.5 times as fast as tout.
Keywords: Solar energy; Concentrating solar power (CSP); Direct steam generation (DSG); Transient characteristics; SIMPLE algorithm (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118314976
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:135:y:2019:i:c:p:800-810
DOI: 10.1016/j.renene.2018.12.058
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().