EconPapers    
Economics at your fingertips  
 

Transient characteristics of a parabolic trough direct-steam-generation process

Lu Li, Jie Sun, Yinshi Li, Ya-Ling He and Haojie Xu

Renewable Energy, 2019, vol. 135, issue C, 800-810

Abstract: Solar-powered direct steam generation (DSG) is attractive for power generation and industrial utilization due to the combination of renewable-energy source and clean energy carrier. An improved SIMPLE algorithm ensuring the dual roles of pressure acting on velocity and density fields is developed to realize thermo-hydraulic completely-coupled modeling of a typical DSG loop with transient phase-change and multiple flow-patterns. The excitation-response characteristics of the loop were investigated under various step-variations of direct normal irradiance (DNI), inlet mass flowrate (min) and inlet temperature (tin). Increasing DNI (decreasing min) is found to narrow the preheating-evaporation regions and expand the superheating region, and vice versa. While under step-variations of tin, the evaporation region almost remains unchanged (about 403 m). The water slides to a lower temperature faster than climbs to a higher one under variations of DNI (up to 670s vs. 2960s) and min (up to 1184s vs. 4420s), simultaneously the outlet temperature (tout) staying a monotonical response-trend. However, under tin variations, tout holds a higher-order trait. The responses of both pressure and velocity are tightly coupled and always hold higher-order trait. The response time of the total mass in the loop is almost 2.5 to 5.5 times as fast as tout.

Keywords: Solar energy; Concentrating solar power (CSP); Direct steam generation (DSG); Transient characteristics; SIMPLE algorithm (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118314976
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:135:y:2019:i:c:p:800-810

DOI: 10.1016/j.renene.2018.12.058

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:800-810