Evaluating the potential of a novel anaerobic baffled reactor for anaerobic digestion of thin stillage: Effect of organic loading rate, hydraulic retention time and recycle ratio
Farid Sayedin,
Azadeh Kermanshahi-pour and
Quan Sophia He
Renewable Energy, 2019, vol. 135, issue C, 975-983
Abstract:
Anaerobic digestion of thin stillage in a novel anaerobic baffled reactor (ABR) was evaluated with respect to the selected operating conditions including organic loading rate (OLR), hydraulic retention time (HRT) and recycle ratio (RR). The hybrid ABR achieved the chemical oxygen demand (COD) removal, sulfate removal and methane yield of 92.5-78.9%, 97-93% and 305-275 mL CH4 g−1 CODremoved, respectively at OLR of 3.5–6 kg COD m−3 d−1, HRT of 20-11.7d and RR of 15. However, the COD and sulfate removal and methane yield didn’t change significantly at the RR range of 10–20 and OLR of 3.5 kg COD m−3 d−1 (HRT of 20d). Results showed that, increasing RR from 10 to 20, increased the contribution of later compartments to COD removal from 9% to 16%. On the other hand, the composition of VFA changed in response to the change in OLR. The removal of nitrogen and phosphorus from thin stillage digestate was around 37% and 49% in the novel ABR, respectively due to struvite precipitation. Struvite precipitation from the effluent of novel ABR with the addition of magnesium led to further nitrogen and phosphorus removal of 44% and 81%, respectively, indicating the potential of digestate for nutrient recycling.
Keywords: Thin stillage; Anaerobic digestion; Recycle ratio; Hydraulic retention time; Hybrid anaerobic baffled reactor (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118315313
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:135:y:2019:i:c:p:975-983
DOI: 10.1016/j.renene.2018.12.084
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().