A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based Multi-kernel robust ridge regression
Jyotirmayee Naik,
Pradipta Kishore Dash and
Snehamoy Dhar
Renewable Energy, 2019, vol. 136, issue C, 701-731
Abstract:
This paper presents a new hybrid multi-objective wind speed and wind power prediction interval forecasting (PIs) model which is the combination of variational mode decomposition (VMD), Multi-kernel robust ridge regression (MKRR) and a multi-objective Chaotic water cycle algorithm (MOCWCA). VMD is applied to decompose the main time series signals into appropriate number of modes that avoids the mutual effects present in between the modes. The VMD based MKRR method is applied to estimate the wind speed and wind power prediction intervals at a prediction interval nominal confidence levels (PINC) of 95%, 90%,85% and 80%, respectively. Further to improve the performance of the proposed prediction model MOCWCA is introduced for the optimization of the prediction models parameters in such a way that multiple objectives are satisfied to produce Pareto-optimal solutions. The wind speed and power data samples for prediction interval forecasting are collected at 30 min and 1 hour time intervals from the Sotavento wind farm located in Spain.
Keywords: Wind power and wind speed prediction; Prediction intervals; Variational mode decomposition; Multi-kernel robust ridge regression; Multi-objective chaotic water cycle algorithm (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119300060
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:136:y:2019:i:c:p:701-731
DOI: 10.1016/j.renene.2019.01.006
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().