EconPapers    
Economics at your fingertips  
 

Performance evaluation of different cationic flocculants through pH modulation for efficient harvesting of Chlorella sp. HS2 and their impact on water reusability

Manoranjan Nayak, Naim Rashid, William I. Suh, Bongsoo Lee and Yong Keun Chang

Renewable Energy, 2019, vol. 136, issue C, 819-827

Abstract: Flocculation is an effective technique for harvesting microalgae due to low energy input and being scalable up to industrial algaculture. In this study, four different flocculants at various concentration, and pH levels were employed for the harvesting of Chlorella sp. HS2. Among the tested flocculants, chitosan showed the highest flocculation efficiency of 99.6% ± 0.25 at 10 mg L−1 dosage, pH 8.0 and 30 min of sedimentation. It turned out that the choice of flocculants had minimum impact on the fatty acids methyl ester (FAME) yield and composition. When the reusability of the spent medium for each flocculant was investigated, the culture supernatant obtained from chitosan-based harvesting method had lower growth inhibitory effects in comparison to those harvested using the other flocculants. The cost analysis also favored chitosan-based flocculation, because it returned the highest flocculant efficiency while the flocculant dosage was the lowest. Due to its high harvest efficiency and low impact on the water footprint, it was concluded that the chitosan offer promising advantages over other flocculants.

Keywords: Chlorella sp. HS2; Flocculation; Harvesting efficiency; Medium reuse; Biodiesel (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119300503
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:136:y:2019:i:c:p:819-827

DOI: 10.1016/j.renene.2019.01.050

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:136:y:2019:i:c:p:819-827