EconPapers    
Economics at your fingertips  
 

Experimental investigation of horizontally operating thermal diode solar water heaters with differing absorber materials under simulated conditions

Ronald Muhumuza, Aggelos Zacharopoulos, Jayanta Deb Mondol, Mervyn Smyth, Adrian Pugsley, Giovanni Francesco Giuzio and Danas Kurmis

Renewable Energy, 2019, vol. 138, issue C, 1051-1064

Abstract: Partially evacuated spaces with small volumes of HTF (Heat Transfer Fluid) Phase Change Materials (PCMs), called thermal diodes, can minimise heat losses in ICSSWHs. However, the collection and retention performance of thermal diode ICSSWHs is material dependent as well as influenced by environmental conditions. To investigate this condition, three laboratory scale thermal diode ICSSWH prototypes were experimentally evaluated with different component materials and volumetric capacity. The units were tested indoors under constant solar simulator irradiance for 6 h to determine heat collection, followed by an 18-h cooling period to determine heat retention. In addition, the water temperature in storage was raised to desired levels using a refrigerated/heating circulator and prototypes left to cool overnight in stable ambient air conditions. ICSSWH 1 with 16.7 L of storage capacity, had absorber and evaporator components of aluminium and stainless steel, respectively whilst ICSSWHs 2 and 3 had vessels made from stainless steel with 16.7 and 27.7 L storage capacity, respectively. The mean 6-h collection efficiencies for ICSSWHs 1, 2 and 3 were 47.4%, 51.6% and 48.0%, respectively. Normalised water temperature profiles, retention efficiencies and thermal loss coefficients suggest that the performance of ICSSWH 2 and ICSSWH 3, are preferable compared to ICSSWH 1.

Keywords: Thermal-diode ICSSWHs; Materials; PCMs; Collection; Retention; Simulation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119301879
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:138:y:2019:i:c:p:1051-1064

DOI: 10.1016/j.renene.2019.02.036

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:1051-1064