Numerical investigation on drag coefficient and flow characteristics of two biomass spherical particles in supercritical water
Hui Jin,
Huibo Wang,
Zhenqun Wu,
Zhenhua Ren and
Zhisong Ou
Renewable Energy, 2019, vol. 138, issue C, 11-17
Abstract:
Supercritical water fluidized bed (SCWFB) is a novel reactor which can achieve efficient and clean gasification of biomass. The study of supercritical water (SCW)-solid two-phase flow characteristics in SCWFB is of great significance for biomass conversion and optimization of the reactor. However, the work on the drag coefficient of single biomass particle and biomass particle cluster has limitations to describe the interactions between particles accurately. In this paper, two-particle model was used to study the drag coefficient and flow characteristics of supercritical water flow past biomass particle cluster in the range of 10 < Re < 200. The simulation results show the interactions between particles can transmit larger distances perpendicular to the flow field at low Re. Drag coefficient of particles is mainly affected by the wake zone generated behind the upstream particles and nozzle effect between particles. Nozzle effect which is significant at high Re will promote flow separation and make form drag and friction drag increase. And the wake zone generated behind the upstream particles has the opposite effect.
Keywords: Supercritical water; Fluidized bed; Particle interactions; Drag coefficient (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119300564
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:138:y:2019:i:c:p:11-17
DOI: 10.1016/j.renene.2019.01.056
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().