EconPapers    
Economics at your fingertips  
 

Effect of torrefaction on the physicochemical properties of pigeon pea stalk (Cajanus cajan) and estimation of kinetic parameters

Rishikesh kumar Singh, Arnab Sarkar and Jyoti Prasad Chakraborty

Renewable Energy, 2019, vol. 138, issue C, 805-819

Abstract: Torrefaction of biomass is an important preprocessing step which increases energy density and higher heating value. Torrefaction of pigeon pea stalk has been carried out in a tubular quartz reactor at different temperatures under nitrogen atmosphere. DT-TGA data have been used to predict the pyrolysis behavior and in estimating kinetic parameters using Arrhenius method. The effect of temperature was more pronounced as compared to residence time on the yield of solid product during torrefaction. Both O/C ratio and H/C ratios have decreased with increase in temperature. There was 28.6% increase in HHV of torrefied biomass at 275 °C and 45 min residence time as compared to raw biomass. There has been increase in energy density for torrefied biomass as compared to raw biomass. Moisture reabsorption, loose and tapped bulk density decreased for torrefied biomass as compared to raw biomass. For pigeon pea stalk Carr Compressibility index has decreased and Hausner Ratio has increased, resulting in lesser compactability and improved flowability respectively for torrefied biomass. Torrefied pigeon pea stalk exhibited better combustible properties. The activation energies of hemicellulose and cellulose have been decreased by 32.5% and 28.2% due to severe torrefaction. The contribution factor for hemicellulose decreased with increasing severity of torrefaction.

Keywords: Biomass; Pigeon pea stalk; Torrefaction; Energy density; Activation energy (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119301661
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:138:y:2019:i:c:p:805-819

DOI: 10.1016/j.renene.2019.02.022

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:805-819