EconPapers    
Economics at your fingertips  
 

Comparison of low wind speed aerodynamics of unsymmetrical blade H-Darrieus rotors-blade camber and curvature signatures for performance improvement

A.R. Sengupta, A. Biswas and R. Gupta

Renewable Energy, 2019, vol. 139, issue C, 1412-1427

Abstract: Unsymmetrical blade Vertical axis wind turbine (VAWT) can be nicely adapted in the built environment because of its improved performance, self-starting ability, simple construction, easy maintenance and capability to adapt to wind direction changes. For proliferation of such VAWT installations, the challenge is to improve its efficiency in low wind speed condition (usually less than 10 m/s) of the built environment, which depends on its blade profile design. In an unsymmetrical blade, blade thickness-to-chord ratio, percentage camber, blade curvature around aerodynamic moment center are the controlling parameters for effective blade-fluid interactions for performance improvement, thus requiring a detailed investigation of the aerodynamics of unsymmetrical blade VAWT. The objective of this paper is to compare low wind speed aerodynamics of two different unsymmetrical airfoil blade profiles to obtain design information of blade camber and blade curvature around aerodynamic moment center for performance improvement of H-Darrieus VAWT, which is hardly available in the existing literature. Detailed blade-fluid interactions are analysed by Ansys Computational Fluid Dynamics (CFD) software for different low wind speeds between 4 m/s and 8 m/s. It is found that more rounded curvature of the suction side surface of advancing S815 blade around aerodynamic moment center and thicker blade profile (maximum thickness is 26.2% at 25.7% chord) has a distinct influence for performance improvement of the rotor in the power stroke. In the returning stroke, the VAWT is benefited from higher camber of EN0005 blade (maximum camber percentage of 10% at 55% chord) and lesser blade curvature of the blade suction side. Next, vorticity structures of each blade profile have also been monitored at different azimuthal positions and necessary performance insights with regards the development of static/deep stall vortices and other boundary layer features have been drawn. Further, blade polars, power performance, and blade loading have also been obtained and compared with published results. Overall better designs of unsymmetrical blade profiles have also been recommended. The present study leads to the understanding of the design blade camber and curvature signatures in both power and returning strokes for possible performance improvement of small-sized VAWT in low wind speed condition.

Keywords: H-Darrieus rotor; Unsymmetrical airfoil blade; CFD simulation; Blade-fluid interaction; Deep static stall; Blade camber and curvature signatures (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119303593
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:139:y:2019:i:c:p:1412-1427

DOI: 10.1016/j.renene.2019.03.054

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:139:y:2019:i:c:p:1412-1427