EconPapers    
Economics at your fingertips  
 

Dynamic mode decomposition of cavitating flow around ALE 15 hydrofoil

Ming Liu, Lei Tan and Shuliang Cao

Renewable Energy, 2019, vol. 139, issue C, 214-227

Abstract: The Dynamic Mode Decomposition (DMD) and Proper Orthogonal Decomposition (POD) are employed to analyze the coherent structure of cavitating flow around ALE 15 hydrofoil. The snapshot data sequence is obtained from the numerical simulations by means of LES approach and modified Schnerr-Sauer cavitation model. Under cavitation number σ = 2.3, the cavitating flow around ALE 15 hydrofoil sheds at the short side while it almost remains stable at the long side. The eigenvalue distribution of DMD is symmetrical along the real axis of the plane, and the eigenvalues appear as conjugate pairs. The DMD method can accurately extract the frequency characteristics, and results show that the decomposed Mode at St = 2.224 is related to the shedding frequency of cloud cavitation, which agrees well with the shedding frequency of 2.208–2.805 in experimental measurement. The POD method can effectively analyze the major structure of high energy, in which the first four modes contain over 60% total energy of flow field. In comparison of POD, the DMD is more effective to decompose the complex flow field into uncoupled coherent structures with specific dynamic modes and corresponding frequencies.

Keywords: Cavitating flow; Dynamic mode decomposition (DMD); Proper orthogonal decomposition (POD); ALE 15; Large eddy simulation (LES) (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119302095
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:139:y:2019:i:c:p:214-227

DOI: 10.1016/j.renene.2019.02.055

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:139:y:2019:i:c:p:214-227