Assessment of plant biomass for pellet production using multivariate statistics (PCA and HCA)
Dorival Pinheiro Garcia,
José Cláudio Caraschi,
Gustavo Ventorim,
Fábio Henrique Antunes Vieira and
Thiago de Paula Protásio
Renewable Energy, 2019, vol. 139, issue C, 796-805
Abstract:
Multivariate statistics can be a powerful tool in the assessment of energy properties of lignocellulosic materials and it is fundamental to estimate the theoretical, technical and economic potentials of these biomasses for bioenergy production. In this research, it was used to select the most favorable vegetable biomass for the production of biofuel pellets, through two techniques: Hierarchical Clustering Agglomerative and Principal Components. Six types of biomasses (pinus wood, eucalyptus wood, sugarcane bagasse, bamboo, sorghum, and elephant grass) and three blends were used. The immediate, elemental and thermochemical analyzes provided 16 variables of each of the 9 types of pellets. The dendrogram highlighted the group of forest biomass as the most suitable for the production of pellets and the principal component factors produced two bioenergetic indicators; one of general performance and other of combustibility. The forest biomass pellets was highlighted as potential for the production of biofuel pellets because they have energy properties with low levels of ash (0.54%) and nitrogen (0.83%), associated with high fixed carbon content (20.89%) and higher heating value (20.71 MJ kg−1), as well a higher energy density (13.95 GJ m−3). The multivariate analysis was efficient and can be used to classify lignocellulosic materials.
Keywords: Renewable energy; Energy crops; Agro-pellets; Wood pellets; Fuel properties; Chemical composition (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119302575
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:139:y:2019:i:c:p:796-805
DOI: 10.1016/j.renene.2019.02.103
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().