EconPapers    
Economics at your fingertips  
 

Simultaneous optimization of multiple operating engine parameters of a biodiesel-producer gas operated compression ignition (CI) engine coupled with hydrogen using response surface methodology

V.S. Yaliwal, N.R. Banapurmath, V.N. Gaitonde and M.D. Malipatil

Renewable Energy, 2019, vol. 139, issue C, 944-959

Abstract: This present work highlights the influence of injection timing (IT), injector opening pressure (IOP) and compression ratio (CR) on the combustion characteristics of a diesel engine operated on renewable and sustainable fuels. In this research work an effort has been made to enhance the combustion of fuel combination in a diesel engine with addition of carbon free hydrogen and in the direction of lowering the exhaust emission levels. Experimental investigations have been carried out to study the combustion and exhaust characteristics of a single cylinder, four stroke, direct injection (DI) diesel engine operated on Tri-fuel mode using Honge seed oil methyl ester (HsOME) as the injected fuel and producer gas-hydrogen mixture as the inducted fuel. . To minimize the number of experiments full factorial design (FFD) has been adopted. The response surface methodology (RSM) based quadratic models obtained through FFD have been established between the parameters and proposed characteristics. With hydrogen addition, response surface analysis showed that increasing CR, IOP with advanced IT significantly improves the combustion of HsOME-producer gas fueled diesel engine in terms of the enhanced brake thermal efficiency (BTE) and reduced carbon based emission levels (Smoke opacity, Carbon monoxide, Hydrocarbon) except the nitric oxide (NOx) emissions. Further combustion parameters such as Ignition delay (ID), and combustion duration were lowered with hydrogen addition, advanced IT, increased IOP and CR. In addition peak pressure and heat release rate (HRR) were found to be higher compared to base fuel combination.

Keywords: Honge seed oil methyl ester (HsOME); Producer gas; Full factorial design; Response surface methodology (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119302587
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:139:y:2019:i:c:p:944-959

DOI: 10.1016/j.renene.2019.02.104

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:139:y:2019:i:c:p:944-959