EconPapers    
Economics at your fingertips  
 

Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis

Seyyed Ali Farshad and M. Sheikholeslami

Renewable Energy, 2019, vol. 141, issue C, 246-258

Abstract: The current investigation numerically scrutinizes exergy loss and heat transfer of mixture of Aluminum oxide and H2O through a solar collector. Finite volume method has been employed with considering realizable k−ε. Such turbulence model has been selected because of best agreement with previous experimental outputs. To assure the accuracy of code, comparisons with numerical and experimental outputs have been provided for different Reynolds number (Re), number of revolution (N) and diameter ratio (D*). Dispersing Al2O3 is apparently able to offer a more promotion on second law's performance. More turbulence mixing occurs when employing a turbolentor with extra revolution. As diameter ratio augments, exergy loss drops due to reduction of surface temperature. Increasing inlet velocity brings about a significant reduction in surface temperature which results in less exergy loss.

Keywords: Solar collector; Nanofluid; Exergy; Twisted tape; Pressure drop (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811930480X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:141:y:2019:i:c:p:246-258

DOI: 10.1016/j.renene.2019.04.007

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:141:y:2019:i:c:p:246-258