EconPapers    
Economics at your fingertips  
 

The effect of tongue geometry on pump performance in reverse mode: An experimental study

Hamed Alemi Arani, Mohammad Fathi, Mehrdad Raisee and Seyed Ahmad Nourbakhsh

Renewable Energy, 2019, vol. 141, issue C, 717-727

Abstract: Low specific speed centrifugal pumps can operate as turbine in micro hydropower plants with relatively high head and low flowrate. Improving the hydraulic and mechanical characteristics of reverse pumps in such applications is highly appreciated. In the present study, the effect of tongue geometry on the performance and radial force of a low specific speed centrifugal reverse pump (10.3 [rpm, m3/s, m]) was studied experimentally. By measuring the flowrate, torque, inlet and outlet pressure as well as pressure distribution around the impeller periphery, hydraulic and mechanical characteristics of reverse pump for tongues of different stretchings and angles were obtained. Results showed that medium stretching can be used for reducing the radial force while further stretching of tongue is not beneficial. However, the longest tongue can boost efficiency the most. At nominal and high flowrates, tongue with medium stretching of angle −5° can rise the efficiency and output power at the highest level comparing with other angles, while that of −10° angle gives better condition at low capacities. The longest tongue of −10° could rise efficiency and output power up to 8% and 32% respectively in off-design conditions which makes it the best geometry for the reverse pump.

Keywords: Tongue geometry; PAT; Characteristic curves; Radial force (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119303970
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:141:y:2019:i:c:p:717-727

DOI: 10.1016/j.renene.2019.03.092

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:141:y:2019:i:c:p:717-727