EconPapers    
Economics at your fingertips  
 

Solar photothermal conversion characteristics of hybrid nanofluids: An experimental and numerical study

Xin Jin, Guiping Lin, Aimen Zeiny, Haichuan Jin, Lizhan Bai and Dongsheng Wen

Renewable Energy, 2019, vol. 141, issue C, 937-949

Abstract: In this work, the Fe3O4, Cu and Au with different concentrations and the hybrid nanofluids were prepared and characterized to enhance the solar photothermal conversion performance based on the direct absorption concept. An extensive experimental study was carried out with different sample nanofluids under a solar simulator. The experiment was first conducted with Au nanofluid in three cases to investigate the effect of different test conditions, and the test condition where the simulated sunlight was absorbed by the sample nanofluid only once with minimum heat loss to the surroundings was determined for later research. Based on the experimental results, below conclusions have been reached: 1) the solar energy absorption performance of nanofluids with plasmonic nanomaterials, i.e., Au or Cu, is much better than that of nanofluids with non-plasmonic nanomaterials, i.e., Fe3O4 and DI water, due to the effect of localized surface plasmon resonance; 2) the larger the concentration, the higher the solar energy absorption efficiency, but the increasing rate of the absorption efficiency slows down gradually with the increase of the concentration; 3) a numerical method to predict photothermal conversion efficiency of nanofluid under solar radiation has been proposed; 4) the novel idea of employing hybrid nanofluid to enhance the solar absorption performance has been experimentally and numerical validated, which can enhance the solar photothermal conversion when mixing two nanofluids with different absorption peaks, and there is an optimal mixing volume fraction for hybrid nanofluid.

Keywords: Solar energy; Nanofluids; Direct absorption; Hybrid nanofluid; Absorption efficiency (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119304926
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:141:y:2019:i:c:p:937-949

DOI: 10.1016/j.renene.2019.04.016

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:141:y:2019:i:c:p:937-949