Numerical study on heat extraction performance of a multilateral-well enhanced geothermal system considering complex hydraulic and natural fractures
Yu Shi,
Xianzhi Song,
Gaosheng Wang,
Jiacheng Li,
Lidong Geng and
Xiaojiang Li
Renewable Energy, 2019, vol. 141, issue C, 950-963
Abstract:
The complex fracture network is necessary to provide flow and heat transfer channels for working fluid of an enhanced geothermal system (EGS). It is significant to compare heat extraction performances of different complex fracture networks and to provide suggestions for fracturing operation of an EGS. Based on a 3D thermal-hydraulic-mechanical coupled model, this paper studies heat extraction performances of 11 different complex fracture networks with natural and hydraulic fractures for a multilateral-well EGS. Effects of natural and non-planar fractures on multilateral-well EGS performance are investigated. Influences of primary fracture stage quantity on multilateral-well EGS performance are studied. Contributions of primary and secondary fractures to heat extraction of multilateral-well EGS are compared. Results indicate that natural fractures should be considered when accurately estimating multilateral-well EGS performance. The model with planar fracture networks overestimates production temperature and thermal power of multilateral-well EGS. It is suggested that 3 stages of primary fractures are beneficial for multilateral-well EGS performance. Fracturing operation of multilateral-well EGS should focus on generating long fractures to connect natural fractures far from lateral wells rather than inducing numerous fractures around lateral wells. Simulation results provide significant suggestions for the fracturing operation of multilateral-well EGS.
Keywords: Geothermal energy; Enhanced geothermal system; Non-planar fractures; Natural fractures; Heat extraction performance; Multilateral wells (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811930463X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:141:y:2019:i:c:p:950-963
DOI: 10.1016/j.renene.2019.03.142
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().