Urban photovoltaic potential estimation based on architectural conditions, production-demand matching, storage and the incorporation of new eco-efficient loads
Sergio Zambrano-Asanza,
Esteban F. Zalamea-León,
Edgar A. Barragán-Escandón and
Alejandro Parra-González
Renewable Energy, 2019, vol. 142, issue C, 224-238
Abstract:
The photovoltaic solar potential in an urban sector and the effects produced by the electricity input into a low-voltage grid are determined, the analysis is performed for one year. First, the generation profiles are estimated, assuming the incorporation limits of typical silica panels and using photovoltaic (PV) tiles on roofs as an architectural alternative. Then, the consumer class demand is estimated. Production-demand matching is performed at the load point level to avoid impacts on the grid. A scenario incorporating a new load, induction heating cookers (IHCs) for all residential users, is posed, the use of which coincides with high-radiation hours. Finally, electrical storage is assumed to maximise the PV supply. A 16% coverage with silica PV panels, or 33% with PV tiles, would supply 46% or 39% of the consumption, respectively. With massive incorporation of IHCs and storage, the supply is increased to 73% and 59% of the consumption with silica panels and PV tiles, respectively. An annual consumption reduction of 16 Tn of liquefied petroleum gas is attained in the cases studied. Additionally, it is necessary to redirect the current subsidies for hydro dams and the overall energy sector towards promoting distributed microgeneration.
Keywords: Solar energy; Photovoltaics; Urban energy system; Spatial distribution; Demand side management (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119304173
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:142:y:2019:i:c:p:224-238
DOI: 10.1016/j.renene.2019.03.105
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().