Effect of short cloud shading on the performance of parabolic trough solar power plants: motorized vs manual valves
Mohammad Abutayeh,
Ricardo Vasquez Padilla,
Maree Lake,
Yee Yan Lim,
Jesus Garcia,
Mohammadreza Sedighi,
Yen Chean Soo Too and
Kwangkook Jeong
Renewable Energy, 2019, vol. 142, issue C, 330-344
Abstract:
This paper uses a dynamic bio-inspired model to simulate cloud movement over a parabolic trough collector solar field. Time-stamped spatially varying solar radiation records resulting from that dynamic model are successively fed into an instantaneous flow distribution model of the same solar field. Two different flow control strategies are simulated to evaluate and compare their impact on plant performance. One strategy employs manual balancing valves resulting in an uneven exit temperature from each loop during cloud cover periods. The other strategy employs motorized balancing valves that constantly adjust to achieve a common desired exit temperature from each loop during cloud cover periods. Model output of both strategies under four different cloud shading conditions are compared. Simulation results showed that employing motorized balancing valves will result in a more efficient operation involving less pressure drop, higher outlet temperature and less pumping load; however, the rate of power generation was almost the same in both strategies.
Keywords: Agent-based model; Concentrating solar power; Parabolic trough collectors; Heat transfer fluid; Cloud shading; Flow balance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119305786
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:142:y:2019:i:c:p:330-344
DOI: 10.1016/j.renene.2019.04.094
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().