Comparison studies on pore development mechanisms of activated hard carbons from polymeric resins and their applications for electrode materials
Hye-Min Lee,
Kay-Hyeok An,
Dong-Cul Chung,
Sang-Chul Jung,
Young-Kwon Park,
Soo-Jin Park and
Byung-Joo Kim
Renewable Energy, 2019, vol. 144, issue C, 116-122
Abstract:
In this study, activated polymer-based hard carbons (APHs) were prepared for supercapacitor electrode applications under various carbonization and activation conditions. The crystallite size of the APHs was adjusted by changing the heating rate during the carbonization process. The surface morphologies and structural characteristics of the APHs were observed by SEM and XRD, respectively. The N2 adsorption isotherm characteristics at 77 K were confirmed by BET and BJH equations. From the results, the specific surface areas and total pore volumes of the APHs were determined to be 790–1620 m2/g and 0.31–0.68 cm3/g, respectively. It was also observed that pore structure depended on crystallite size and CO2 activation conditions. Also, the carbonization conditions could control the crystal structure and pore structure of the APHs. A small crystallite size produced APHs with the high specific surface area, and large crystallite size produced APHs with uniform pore size distribution. The analysis of electrochemical characteristics also found that the specific capacity increased from 8 to 108 F/g. Based on these results, we were able to determine the pore characteristics of APHs by controlling the carbonization and activation conditions, which consequently allowed us to manufacture the APHs with advanced electrochemical properties.
Keywords: Supercapacitor; Polymer; Activated carbon; Physical activation; Carbonization condition (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118313399
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:144:y:2019:i:c:p:116-122
DOI: 10.1016/j.renene.2018.11.020
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().