A numerical analysis of the energy and entropy generation rate in a Linear Fresnel Reflector using computational fluid dynamics
Oscar A. López-Núñez,
J. Arturo Alfaro-Ayala,
O.A. Jaramillo,
J.J. Ramírez-Minguela,
J. Carlos Castro,
Cesar E. Damian-Ascencio and
Sergio Cano-Andrade
Renewable Energy, 2020, vol. 146, issue C, 1083-1100
Abstract:
This work presents an energy and entropy generation analysis of a Linear Fresnel Reflector using the Computational Fluid Dynamics. It consists of 25 mirrors oriented to a receiver tube, which is located inside a Compound Parabolic Concentrator. The formulation of the entropy generation rate considers the phenomena of viscous dissipation, heat transfer and radiation, it is performed in a local and global way and implemented by user-defined functions. Results of the incident radiation, absorbed radiation, radiation temperature, temperature gradients, air velocity contours, Nusselt number and optical efficiency, are presented. Results show that the maximum values of the absorbed radiation (7800 W m−2), incident radiation (30,000 W m−2) and radiation temperature were located at the receiver tube. Also, the maximum value of the temperature gradient (39,000 K m−1) was obtained on the lower half of the receiver tube and the upper part of the secondary receiver. Moreover, the highest values of the entropy generation rate were located at the upper part of the secondary receiver for each phenomenon considered. It is concluded that the entropy generation rate due to heat transfer phenomenon is the most dominant (97.4% of the total), followed by radiation (2.59%) and then by viscous dissipation (negligible).
Keywords: Solar concentrator; Linear fresnel reflector; Discrete ordinates method; Entropy generation; Computational fluid dynamics (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811930984X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:146:y:2020:i:c:p:1083-1100
DOI: 10.1016/j.renene.2019.06.144
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().