EconPapers    
Economics at your fingertips  
 

Using CaCl2·6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation

Mohammad Rezvanpour, Danial Borooghani, Farschad Torabi and Maryam Pazoki

Renewable Energy, 2020, vol. 146, issue C, 1907-1921

Abstract: This study aims to investigate how Calcium Chloride Hexahydrate (CaCl2·6H2O) as a phase change material (PCM) can regulate the PV cells temperature and improve the electrical performance of photovoltaic panels in a completely cold environment in Tehran, Iran. Moreover, TRNSYS simulation software was employed to validate the experimental Results. Also, a novel kind of facile and cost-effective system design and data acquisition were introduced. A general analysis for all the experiments’ days and an investigation on a particular day at the end of November for having a closer look was done. Then, a comparison between experimental and simulation results was performed. In this regard, experimental outcomes showed a maximum temperature drop by 26.3∘C (38% of reduction) for the PV-PCM panel compared to the conventional PV module. Furthermore, PV-PCM panel benefited from a power output increase by 1.16 W (24.68% of increase) during November and December. Finally, modeling outcomes followed the experimental data perfectly with very low errors. With this in mind, the minimum and the maximum difference between experimental and simulation results were 0.96% and 8.25% respectively, which demonstrated a great agreement between these data.

Keywords: Phase Change Material (PCM); PV-PCM panel; Passive cooling; TRNSYS; Cold environment (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811931095X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:146:y:2020:i:c:p:1907-1921

DOI: 10.1016/j.renene.2019.07.075

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1907-1921