Improving the thermal performance of ground air heat exchanger system using sand-bentonite (in dry and wet condition) as backfilling material
Kamal Kumar Agrawal,
Rohit Misra and
Ghanshyam Das Agrawal
Renewable Energy, 2020, vol. 146, issue C, 2008-2023
Abstract:
Thermal performance of ground-air heat exchanger (GAHE) depends on the rate of heat transfer between air and soil, which is governed by thermal properties of soil surrounding the GAHE pipe. Soil thermal properties around GAHE pipe can be improved either by increasing its moisture contents or by using some thermally enhanced backfilling materials. In the present study experimentally investigates the thermal performance of ground-air heat exchanger system using a sand-bentonite mixture (dry as well as wet) and compare their performance with the ground air heat exchanger system having native soil (dry as well as wet) as backfilling material. The study acknowledges the highest cooling capacity (125 W) for GAHE with wet sand-bentonite as backfilling material, and after 6 h of continuous operation, it is 38.4%, 18.4% and 11.1% higher than that obtained with dry native soil, dry sand-bentonite and wet native soil, respectively. The study also revealed that thermal performance deterioration factor (TPDF) increases with the duration of the operation. At airflow velocity of 5 m/s, after 6 h of continuous operation highest TPDF is noticed for ground-air heat exchanger with dry soil (0.22); whereas, lowest TPDF is observed for ground-air heat exchanger system with wet sand-bentonite (0.07).
Keywords: Ground-air heat exchanger; Backfilling materials; Soil moisture migration; Pipe length; Cooling capacity; Thermal performance deterioration factor (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119312315
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:146:y:2020:i:c:p:2008-2023
DOI: 10.1016/j.renene.2019.08.044
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().