EconPapers    
Economics at your fingertips  
 

Anaerobic co-digestion of the process water from waste activated sludge hydrothermally treated with primary sewage sludge. A new approach for sewage sludge management

J.A. Villamil, A.F. Mohedano, J. San Martín, J.J. Rodriguez and M.A. de la Rubia

Renewable Energy, 2020, vol. 146, issue C, 435-443

Abstract: Hydrothermal carbonization (HTC) is a suitable technology for managing wastes with a high moisture content, providing a carbon-rich and high energy density material called hydrochar and a process water (PW) with significant organic matter content. The aim of this work was to develop a new approach to sewage sludge management involving anaerobic digestion (AD) of the PW of dewatered waste activated sludge (DWAS) with primary sewage sludge (PSS). The process was optimized by performing semi-continuous experiments with different feed mixture compositions (10% PW/90% PSS and 5% PW/95% PSS, on a COD basis), organic loading rates (OLR; 1.5 and 2.5 g COD L−1 d−1), and temperature regimes (mesophilic and thermophilic). The combination of mesophilic conditions, a 10% PW/90% PSS feed mixture and OLR of 1.5 g COD L−1 d−1 provided concentrations of volatile fatty acids <400 mg COD L−1 in addition to a methane yield (172 ± 11 mL CH4 g−1 CODadded), 1.15 times the value for the control test (100% PSS). Therefore, the energy content of hydrochar from HTC of DWAS followed by AD of the process water with primary sewage sludge enhances the valorization of this renewable residue.

Keywords: Anaerobic digestion; Hydrothermal carbonization; HTC process water; Mesophilic and thermophilic operation; Semi-continuous operation; Sewage sludge valorization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119309784
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:146:y:2020:i:c:p:435-443

DOI: 10.1016/j.renene.2019.06.138

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:435-443