Novel solar PV/Thermal collector design for the enhancement of thermal and electrical performances
Oussama Rejeb,
Leon Gaillard,
Stéphanie Giroux-Julien,
Chaouki Ghenai,
Abdelmajid Jemni,
Maamar Bettayeb and
Christophe Menezo
Renewable Energy, 2020, vol. 146, issue C, 610-627
Abstract:
The main objective of this study is to develop a novel photovoltaic thermal collector (PVT) to improve the electrical and thermal efficiencies of the solar collector. The goal is to maximize the electrical power and minimize the thermal losses of the solar panel. A novel photovoltaic thermal collector is designed and tested. The new PVT collector includes: (1) An optical anti-reflective and low-emissivity coating to reduce the radiation losses; (2) A thermal resistance to reduce the conduction losses between the photovoltaic and absorber plate; and (3) A channel heat exchanger to decrease the thermal losses between the solar cells and the cooling fluid. A transient two-dimension multi-physics model for the PVT sheet-tube and the advanced PVT collector is developed. The state variable variations are predicted by the finite volume method. A comparison between the two considered hybrid collectors in terms of thermal and electrical efficiencies and temperature distribution is performed. Moreover, the impact of arrangement (anti-reflective and low-emissivity coating, thermal resistance between the absorber plate and the cooling fluid, enhanced exchange surface area between the flat plat exchanger and the cooling fluid) on the new PVT collector is studied and analyzed. The simulation results showed clearly the advantages of using this evolution of the PVT collector compared to the basic one. Indeed, this new PVT configuration represents a series of improvements that lead to a lower PV module and higher fluid operating temperatures. Higher electrical and thermal efficiencies for the proposed PVT (15.4%, 73%) are obtained compared to the basic PVT collector (13.7%, 58%), respectively under no loss and standard test conditions.
Keywords: Hybrid solar PVT; Back cooling; Electrical efficiency; Thermal efficiency; Novel collector; Channel heat exchanger (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811930998X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:146:y:2020:i:c:p:610-627
DOI: 10.1016/j.renene.2019.06.158
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().