EconPapers    
Economics at your fingertips  
 

Climatic and seasonal suitability of phase change materials coupled with night ventilation for office buildings in Western China

Jiang Liu, Yan Liu, Liu Yang, Tang Liu, Chen Zhang and Hong Dong

Renewable Energy, 2020, vol. 147, issue P1, 356-373

Abstract: Phase change material (PCM) coupled with night ventilation (NV) is regarded as a promising cooling strategy. The suitability of PCM coupled with NV in transition and hot seasons of 10 cities in Western China was investigated based on a non-air-conditioned office building. The optimum phase change temperature (PCT) and the cooling potential of PCM coupled with NV in transition and hot seasons were determined by numerical investigations using EnergyPlus. The results showed that the optimum PCT for the 10 selected cities varied from 23 °C to 29 °C. PCM coupled with NV was suitable for application in all of the selected cities, but the PCM strategy was the best choice for the transition season in cities in severe cold zone. Applying PCM coupled with NV strategy could reduce the discomfort hours in the transition season by at least 16% compared with NV alone. In addition, the favorable outdoor air dry-bulb temperature (Tout) for the application of PCM coupled with NV was obtained for the selected cities in Western China, which had the following characteristics: (1) the diurnal temperature difference (ΔT) exceeded 6.8 °C, (2) the average value (Tave) was close to 27 °C, (3) the minimum value (Tmin) was 2.7 °C lower than the optimum PCT and the maximum value (Tmax) was 1.7 °C higher than the optimum PCT.

Keywords: Climatic suitability; Night ventilation; Phase change material; Seasonal suitability; Western China (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811931256X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:147:y:2020:i:p1:p:356-373

DOI: 10.1016/j.renene.2019.08.069

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:356-373