Performance and energy recovery of single and two stage biogas production from paper sludge: Clostridium thermocellum augmentation and microbial community analysis
Qian An,
Jing-Rong Cheng,
Yu-Tao Wang and
Ming-Jun Zhu
Renewable Energy, 2020, vol. 148, issue C, 214-222
Abstract:
A two-stage thermophilic hydrogen fermentation and mesophilic methane production from paper sludge was successfully explored. The maximum hydrogen and methane potential were 0.165 L/g VS and 0.376 L/g CODeffluent, respectively with Clostridium thermocellum augmentation. 63 L of hydrogen and 122 L of methane were recovered from 1 kg Paper sludge (PS, dry weight) with an energy yield of 4.5 MJ/kg PS, 50% higher compared to the single-stage anaerobic digestion (94 L CH4, 3.0 MJ/kg PS). The bacterial community of second-stage process was dominated by genus Propionispira, Mesotoga and Aminobecterium with stability, whereas the bacterial structure in single-stage process presented dynamic changes where genus Acetivibrio and Fibrobacter played an indispensable role. However, Genus Methanosaeta, Methanosarcina, Methanobacterium and Methanospirillum existed stably and predominantly in the archaeal community of single-stage and second-stage processes. The present study suggests the potential application of the established two-stage process in valorization of low-value waste biomass.
Keywords: Paper sludge; Hydrogen; Methane; Microbial community; Thermophilic fermentation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119318361
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:148:y:2020:i:c:p:214-222
DOI: 10.1016/j.renene.2019.11.142
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().