EconPapers    
Economics at your fingertips  
 

Hydrothermal carbonization of waste biomass to fuel: A novel technique for analyzing experimental data

Alberto Gallifuoco, Luca Taglieri and Alessandro Antonio Papa

Renewable Energy, 2020, vol. 149, issue C, 1254-1260

Abstract: This paper deals with a new stochastic approach to handling data from waste biomass hydrothermal carbonization. The dynamics of hydrochar properties are described using the concept of reaction time distributions. A set of cumulative frequency distribution functions is provided that could very well correlate the most disparate experimental data. The procedure for analyzing the results is detailed. The method is illustrated with experiments on batch runs with five different wastes from the agro-food industry. Isothermal reactions (200 °C) were performed up to 120 min at a constant 7/1 water/biomass ratio. The regression analyses fully confirm the correctness of the method. The use of dynamical van Krevelen plots is proposed. The approach allows also obtaining from lab-scale runs fundamental information for the correct waste-to-fuel process development at the industrial scale. The mathematics is not demanding and, unlike other methods, the difficulties substantially do not increase with the complexity of the modeled kinetic scheme.

Keywords: Hydrothermal carbonization; Agro-food wastes exploitation; Hydrochar formation; Stochastic modeling; Van krevelen plot (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119316180
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:149:y:2020:i:c:p:1254-1260

DOI: 10.1016/j.renene.2019.10.121

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1254-1260