Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell
J. Annie Modestra,
C. Nagendranatha Reddy,
K. Vamshi Krishna,
Booki Min and
S. Venkata Mohan
Renewable Energy, 2020, vol. 149, issue C, 424-434
Abstract:
Influence of surface anode potential on the performance of microbial fuel cell (MFC) was evaluated by opting positive and negative poised anode potentials (+100/-100 mV) on two MFCs, and studied at two phases (during potential (DP) and post potential (PP)) along with a third MFC operated as control (no applied anode potential). Variation in physico-chemical factors as well as biocatalytic metabolic behavior was analyzed in terms of electron transfer, power density, electro-kinetics and microbial community. Post potential operation at −100 mV depicted rapid electron transfer, higher redox catalytic currents (−0.44/0.42 mA) and voltage (653 ± 28 mV) in comparison to other experimental conditions. Disparity in electron carriers is noticed at both the phases with +100 mV (dominantly direct electron transfer)/-100 mV (cytochrome components) potential as well as control (non-specific and multiple carriers) which signify alteration in electron transfer mechanism aligned with change in surface potential. Microbial community analysis depicted the enrichment of exo-electrogenic bacteria belonging to phylum Proteobacteria (Gram negative bacteria) dominant at −100 mV, while Firmicutes (Gram positive bacteria) at +100 mV and a mixed bacterial population at control. Electrochemical investigations correlated with biological efficiency of MFC, which discerns a way to comprehend the underlying electron transfer process triggered in response to change in anode potential.
Keywords: Microbial electrochemical system; Electrochemically active bacteria; Electro-kinetics; Activation energy; Electron losses; Bioelectrochemical system (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119318907
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:149:y:2020:i:c:p:424-434
DOI: 10.1016/j.renene.2019.12.018
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().