Sensitivity analysis of a zeolite energy storage model: Impact of parameters on heat storage density and discharge power density
Frédéric Kuznik,
Damien Gondre,
Kévyn Johannes,
Christian Obrecht and
Damien David
Renewable Energy, 2020, vol. 149, issue C, 468-478
Abstract:
Physisorption heat storage in buildings can be a key technology for a more effective use of heating energy. However, a better understanding of key factors influencing the design and control of such systems is necessary. This paper presents the sensitivity analysis of the modeling parameters in the case of an open zeolite 13X/moist air heat storage system for building applications. The quantities of interest are the heat storage density and the discharge power density of the system. At the beginning, the whole analysis space is composed of 21 physical properties and 7 operating conditions and geometrical properties. After a first threshold selection, analysis of variance is carried on the remaining parameters, with a full factorial design of experiments to perform a complete sensitivity analysis of the model. The results show that only 3 thermophysical properties, i.e. the heat of adsorption, the water vapor molar mass and the adsorption equilibrium, and 3 operating conditions and system geometry parameters, i.e. the inlet relative humidity, the bed length and the inlet fluid flow rate, drive the outlet power density and heat storage density. The way those 6 parameters influence the outputs is also discussed and quantitatively assessed.
Keywords: Physisorption; Heat storage; Numerical modeling; Sensitivity analysis; Optimization; Control (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811931907X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:149:y:2020:i:c:p:468-478
DOI: 10.1016/j.renene.2019.12.035
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().