Thermal performance analysis of a roof with a PCM-layer under Mexican weather conditions
J. Xamán,
A. Rodriguez-Ake,
I. Zavala-Guillén,
I. Hernández-Pérez,
J. Arce and
D. Sauceda
Renewable Energy, 2020, vol. 149, issue C, 773-785
Abstract:
The thermal performance of a concrete roof with a phase change material (PCM) layer on its interior surface under a Mexican warm weather (Merida) is presented. We analyzed a roof with three types of PCM: Paraffin wax - MG29 (R-PCM1), N-Eicosane (R-PCM2), and Salt Hydrates (R-PCM3). We also considered different thickness of the PCM layer. A conventional concrete roof (R–C) was considered as a reference to compare the results. The numerical simulations were conducted during the warmest and the coldest days of the year. A numerical in-house code was developed, and it was verified by solving reference solutions, obtaining good agreement. The results indicate that the case R-PCM1 with 2 cm of PCM layer had the lowest values of thermal load during the coldest (204.5 W h m−2) and the warmest day (610.7 W h m−2); such values are up to 57% lower than the thermal load corresponding to the R–C. The use of R-PCM1 with 2 cm of PCM-layer in Merida city will have a payback period of 12.18 years, Taking into account that buildings in Mexico have a 30-year ordinary service life, the use of these materials is cost-effective. Therefore, it is recommended the R-PCM1 to improve the thermal behavior of buildings located in Merida.
Keywords: Phase change material; Roof; Mexican weather (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119319561
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:149:y:2020:i:c:p:773-785
DOI: 10.1016/j.renene.2019.12.084
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().