Optimal design of hydrokinetic turbine for low-speed water flow in Golden Gate Strait
S. Mohammadi,
M. Hassanalian,
H. Arionfard and
S. Bakhtiyarov
Renewable Energy, 2020, vol. 150, issue C, 147-155
Abstract:
Marine current power has been utilized in recent years as one of the most foreseeable renewable energy sources. In this study, the optimal design of hydrofoil is carried out for hydrokinetic turbines to improve their hydrodynamic performance in Golden Gate Strait with the low-speed current. In order to design optimal hydrofoils for different sections of a blade, Particle Swarm Optimization (PSO) and XFoil are coupled. For hydrofoil’s shape parameterization, the B-spline curve is used. The coordinate’s values of the control points are designated to act as optimization parameters. Five hydrofoils from root to tip are designed for a turbine at low current speed with three blades. Hydrofoils are optimized from hub to tip in distances 0.4, 1.2, 2.4, 3.4, and 4.4 m. Optimum chord length and twist angle distribution along the blade are obtained using Harp_Opt, which is based on Blade Element Momentum theory. Finally, the power coefficient, rotational speed, cavitation criteria, and power are calculated for an optimized turbine and compared to the first turbine and Betz criterion. It is assured that cavitation will not occur at the tip of the blade which the linear velocity is maximum. The summation of cavitation number and minimum pressure coefficient (σ+CpMin) is estimated to be 1.8. The power coefficient is computed using Harp_opt for both initial turbines with hydrofoil NACA 4415 and turbine with optimized cross sections from hub to tip. The power coefficient is improved 26% for speeds of 0.5–2 m/s and 50% for speeds of 2–3 m/s. An optimal marine current turbine which is useable for relatively lower currents is designed in this study by applying and combining different tools for different stages of research.
Keywords: Renewable energy; Optimization; Marine current turbine; Hydrofoil; XFoil; Particle swarm optimization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811932021X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:150:y:2020:i:c:p:147-155
DOI: 10.1016/j.renene.2019.12.142
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().